Motor nerve regulates muscle extracellular matrix proteoglycan expression.

نویسندگان

  • R Fadic
  • E Brandan
  • N C Inestrosa
چکیده

Denervation of rat leg muscles caused a 2-3-fold increase in 35S-sulfate and 3H-glucosamine incorporation into proteoglycans of the muscle extracellular matrix. The size of the proteoglycans and the glycosaminoglycan chain length and degree of sulfation were unchanged. Because the rate of degradation of proteoglycans was also unchanged by denervation, we infer that denervation increases proteoglycan synthesis. Muscle reinnervation restored the original rate of synthesis of proteoglycans. Paralysis of innervated muscle caused increased incorporation of sulfate comparable to that seen in denervation. Thus motor nerve activity appears to regulate the level of proteoglycans in the muscle extracellular matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of the Extracellular Matrix in Skeletal Muscle Development1

Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation; however, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. Proteoglycans can regu...

متن کامل

Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules

Cytotactin is an extracellular matrix protein that is found in a restricted distribution and is related to developmental patterning at a number of neural and non-neural sites. It has been shown to bind specifically to other extracellular matrix components including a chondroitin sulfate proteoglycan (cytotactin-binding [CTB] proteoglycan) and fibronectin. Cell binding experiments have revealed ...

متن کامل

Alternative RNA splicing that determines agrin activity regulates binding to heparin and alpha-dystroglycan.

Agrin is a component of the extracellular matrix that regulates aspects of neuromuscular junction differentiation. Identification of agrin-binding proteins has lead to the suggestion that alpha-dystroglycan is a muscle cell surface proteoglycan that mediates agrin activity. To further test this hypothesis, we have compared the ability of differentially active agrin isoforms to interact with a m...

متن کامل

Schwann cell extracellular matrix molecules and their receptors.

The major cellular constituents of the mammalian peripheral nervous system are neurons (axons) and Schwann cells. During peripheral nerve development Schwann cells actively deposit extracellular matrix (ECM), comprised of basal lamina sheets that surround individual axon-Schwann cell units and collagen fibrils. These ECM structures are formed from a diverse set of macromolecules, consisting of ...

متن کامل

Agrin Can Mediate Acetylcholine Receptor Gene Expression in Muscle by Aggregation of Muscle-derived Neuregulins

The neural isoforms of agrin can stimulate transcription of the acetylcholine receptor (AChR) epsilon subunit gene in electrically active muscle fibers, as does the motor neuron upon the formation of a neuromuscular junction. It is not clear, however, whether this induction involves neuregulins (NRGs), which stimulate AChR subunit gene transcription in vitro by activating ErbB receptors. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 11  شماره 

صفحات  -

تاریخ انتشار 1990